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The gold standard for assessing sleep apnea, polysomnography, is resource intensive and inconvenient. Thus, several simpler
alternatives have been proposed. However, validations of these alternatives have focused primarily on estimating the apnea-
hypopnea index (apnea events per hour of sleep), which means information, clearly important from a physiological point of
view such as apnea type, apnea duration, and temporal distribution of events, is lost. The purpose of the present study was to
investigate if this information could also be provided with the combination of radar technology and pulse oximetry by
classifying sleep apnea events on a second-by-second basis. Fourteen patients referred to home sleep apnea testing by their
medical doctor were enrolled in the study (6 controls and 8 patients with sleep apnea; 4 mild, 2 moderate, and 2 severe) and
monitored by Somnofy (radar-based sleep monitor) in parallel with respiratory polygraphy. A neural network was trained on
data from Somnofy and pulse oximetry against the polygraphy scorings using leave-one-subject-out cross-validation. Cohen’s
kappa for second-by-second classifications of no event/event was 0.81, or almost perfect agreement. For classifying no
event/hypopnea/apnea and no event/hypopnea/obstructive apnea/central apnea/mixed apnea, Cohen’s kappa was 0.43
(moderate agreement) and 0.36 (fair agreement), respectively. The Bland-Altman 95% limits of agreement for the respiratory
event index (apnea events per hour of recording) were -8.25 and 7.47, and all participants were correctly classified in terms of
sleep apnea severity. Furthermore, the results showed that the combination of radar and pulse oximetry could be more accurate
than the two technologies separately. Overall, the results indicate that radar technology and pulse oximetry could reliably
provide information on a second-by-second basis for no event/event which could be valuable for management of sleep apnea.
To be clinically useful, a larger study is necessary to validate the algorithm on a general population.

1. Introduction

Sleep apnea is characterized by repetitive reduction or cessa-
tion of airflow during sleep resulting in microarousals and is
associated with increased risk of daytime sleepiness, coronary
artery disease, stroke, and early death [1]. Despite being a
serious disease, sleep apnea is underrecognized and under-
diagnosed [2]. The gold standard for diagnosing sleep apnea
is inlaboratory polysomnography (PSG) [3]. PSG uses a com-
prehensive set of sensors to measure brain, muscular, respira-

tory, and cardiovascular activity, and collected data is
manually analyzed by a sleep specialist. While PSG is accu-
rate, it is also resource intensive and can be inconvenient
for the patient, who must sleep with several sensors attached
to their body. Overnight respiratory polygraphy (RP), which
in contrast to PSG does not measure brain activity, is often
used as a simpler alternative when diagnosing sleep apnea.
However, RP is still resource intensive and inconvenient for
the patient. To reduce the amount of manual work required,
PSG and RP software have been enhanced with algorithms
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for automatically scoring apnea events at the cost of slightly
reduced precision [4].

More convenient alternatives for assessing sleep apnea
have been investigated [5, 6], such as using only pulse oxim-
etry [7, 8]. Furthermore, recent papers have shown that radar
technology could accurately assess sleep apnea without any
sensors attached to the patient [9–11]. However, the combi-
nation of pulse oximetry and radar technology has not been
investigated. Though, the combination of pulse oximetry
and respiratory inductance plethysmography (RIP), which
also measure respiratory effort, has been studied [12]. More-
over, previous research has focused primarily on measuring
the apnea-hypopnea index (AHI = overall number of hypop-
neas and apneas per hour of sleep). The AHI is today used as
the most important metric for categorizing sleep apnea sever-
ity. However, this practice is debatable as the AHI does not
take individual apnea type (hypopnea, obstructive apnea,
central apnea, or mixed apnea), degree of desaturation, apnea
duration, temporal distribution of events, or sleep disruption
due to respiratory effort related arousals into account, which
are clearly important from a physiological point of view [13,
14]. An ideal tool for assessing sleep apnea would be less
resource intensive and more convenient than PSG/RP, while
still providing the same information.

The aim of the present study was to analyze how accu-
rately the sleep assistant Somnofy can classify individual
sleep apnea events using a combination of radar technology,
pulse oximetry, and machine learning. For this purpose, sleep
apnea events from Somnofy were compared to scorings from
a RP-based home sleep apnea test (HSAT) on a second-by-
second basis. Though, the agreement between Somnofy and
HSAT was also analyzed for the respiratory event index
(REI = number of apnea and hypopnea per hour recording).

2. Methods

2.1. Participants. Fourteen patients (9 males, 5 females)
referred to HSAT by their medical doctor were enrolled in
this study. The average age was 50.1 years, and average body
mass index (BMI) was 30.3. The inclusion criteria were age
between 18 and 70, a medical history that indicated possible
sleep apnea, and no history of upper airway surgery or use of
nasal decongestants or anti-inflammatory medication the last
three months prior to the study. No participants were
excluded from the study. The study was approved by the
Norwegian Ethical Committee (REK, id number 10445).
Written informed consent was obtained from all partici-
pants. All methods were performed in accordance with rele-
vant guidelines and regulations.

2.2. Procedure. All participants underwent HSAT for one
night while also being monitored by Somnofy. The partici-
pants slept in a preorganized bedroom at a university hospi-
tal hotel where one Somnofy unit was placed in a nightstand
position (by the head) and one in a wall position (above the
head), both aiming at the participant’s chests from approxi-
mately 1 meter distance. The setup is visualized in Figure 1.
Since both Somnofy units recorded properly for all the

nights, one unit was randomly picked per patient to reduce
bias to sensor location in the analysis (9 nightstand, 5 wall).

2.3. Home Sleep Apnea Test. Nox T3 (Nox Medical, Iceland),
a type 3 HSAT monitor, was used in this study [15]. Nox T3
measure respiration using a nasal cannula, a thermistor,
thoracic and abdominal respiratory inductance plethysmog-
raphy, and a pulse oximeter. Sleep apneas were manually
scored by a trained specialist in accordance with The AASM
Manual for scoring of Sleep and Associated Events: Rules,
Terminology, and Technical Specifications [3] in the Noxtur-
nal software (version 5.1.3.20388, Nox Medical, Iceland).
Hypopneas were scored based on the recommended rules
of ≥30% reduction in flow for ≥10 seconds and ≥3% oxygen
desaturation from preevent baseline. Apneas, on the other
hand, were scored if there was ≥90% reduction in flow from
preevent baseline for ≥10 seconds. Apneas were classified as
obstructive if there was inspiratory effort throughout the
event, as central apnea if there was no inspiratory effort,
and as mixed apneas if there was no inspiratory effort at the
beginning of the event followed by inspiratory effort at the
final part of the event.

To simplify comparison of events with Somnofy, the
scorings from Nox T3 were transformed into second-by-
second classifications where each second could take the

Somnofy

Recorder

Somnofy

Figure 1: A visualization of the Somnofy set up. One Somnofy unit
was placed on the nightstand, and one unit mounted in a wall
position. Both units were aiming towards the participants’ chest
from approximately one meter. Both units were connected to a
Somnofy Recorder placed under the nightstand.

2 Journal of Sensors



values no event, hypopnea, obstructive apnea, central apnea,
or mixed apnea.

2.4. Somnofy. Somnofy (SM-100, version 0.9.3, VitalThings,
Norway) with the Somnofy Recorder (SM-REC2, version
3.0.1, VitalThings, Norway) was used in this study. Somnofy
utilizes an impulse radio ultra-wideband radar with an aver-
age sampling rate of 23.8GHz to measure body movements.
Through configuration, the samples are sampled into a 3-
meter-long frame of 5 cm bins updated at a frequency of
approximately 17Hz. Periodic movements that have fre-
quencies that could be generated by respiration are further
used to extract an effort-based respiratory waveform. The
Somnofy Recorder enables storage of the 17Hz data instead
of the standard 1Hz resolution. The respiratory waveform
was synchronized with the RP scorings by maximizing the
crosscorrelation between movements from Somnofy and
RP. Somnofy supports connection with other devices
through Bluetooth, which enables collection of oxygen desa-
turation (SpO2) data from a pulse oximeter. WristOx2 3150
(Nonin Medical, USA) was used in this study.

An envelope was created around the respiratory wave-
form to extract an instantaneous amplitude, as previously
done by Coronel et al. for sleep apnea detection with RIP
[12]. The amplitude, the respiratory rate, and the SpO2 were
resampled to a 1Hz resolution and fed into a long short-term
memory neural network (dense−>LSTM−>dense). The net-
work was trained against the manual HSAT scored events
with supervised learning. This way, the algorithm could learn
the relationship between the radar-measured respiratory
effort, the SpO2, and the different apnea types. Leave-one-
subject-out crossvalidation was utilized to both train and
validate the algorithm on the same dataset. In other words,
sleep apnea scorings from Somnofy for one patient were
based on an algorithm which had been trained only on the
other patients.

Somnofy is harmless to human beings and certified
according to the Federal Communication Commission
(FCC) and “Conformité Européene” (CE). The frequency of
the radar pulses enables them to travel through softer mate-
rials like bed sheets while being reflected at denser objects like
the human body. The sensor will measure respiration on only
the closest person if there are multiple persons in the room.
For more details on Somnofy, the reader is referred to the
validation study of Somnofy for sleep stage classification in
healthy adults [16]. Somnofy is currently not an FDA-
approved medical device.

2.5. Statistics. In order to analyze the performance of Som-
nofy for classifying individual sleep apnea events (providing
information on event type, event duration, and temporal
distribution of events), the agreement between Somnofy
and HSAT was investigated for second-by-second classifica-
tions for each participant using Cohen’s kappa. Cohen’s
kappa values were interpreted in the following way: values
higher than .80 were considered as almost perfect agreement,
.80 to .61 as substantial agreement, .60 to .41 as moderate
agreement, .40 to .21 as fair agreement, .20 to.11 as slight
agreement, and values less than.10 as no agreement [17, 18].

The agreement on the REI between Somnofy and manual
HSAT was analyzed using Bland-Altman analysis [19].
Bland-Altman plots were also generated for the hypopnea
index (HI = number of hypopneas per hour recording), the
obstructive apnea index (OAI = number of obstructive
apneas per hour recording), the central apnea index (CAI =
number of central apneas per hour recording), and the mixed
apnea index (MAI = number of mixed apneas per hour
recording). A confusion matrix was generated to compare
the agreement on sleep apnea severity (control: REI < 5, mild:
5 ≤ REI < 15, moderate: 15 ≤ REI < 30, and severe: REI ≥ 30).

Calculations were performed in Python (v. 3.8.6), and
Cohen’s kappa was calculated with the scikit-learn package
(v 0.23.2).

3. Results

3.1. Data. Table 1 shows demographic data and sleep
parameters for the study participants. In total, the dataset
consisted of 1 584 (34 010 seconds) apnea events for
which 628 (14 383 seconds), 823 (16 370 seconds), 76 (1
452 seconds), and 56 (1 805 seconds) were manually
scored by HSAT as hypopnea, obstructive apnea, central
apnea, and mixed apnea, respectively.

Figure 2 displays the development of the respiratory
waveform from Somnofy during one example of each event
type. In these examples, the amplitude is clearly reduced
during apnea events.

3.2. Second-by-Second Analysis. Cohen’s kappa for the
binary classification no event/event between Somnofy with
pulse oximetry (Somnofy+SpO2) and manually scored
HSAT on a second-by-second basis for the whole dataset
was 0.81, or almost perfect agreement. For classifying the
three classes, no event/hypopnea/apnea Somnofy+SpO2
showed moderate agreement (Cohen’s kappa = 0.43), while
for classifying all five classes no event/hypopnea/obstructive
apnea/central apnea/mixed apnea, the agreement was fair
(Cohen’s kappa = 0.36).

Table 1: Overview of participant demography and HSAT data.

Average (SD) Range (min, max)

N (count) 14

N female (count) 5

Age (years) 50.1 (14.1) (20, 75)

BMI (kg/m2) 30.3 (6.1) (21.2, 39.6)

Recording duration (hours) 7.7 (1.0) (5.9, 9.5)

REI 14.3 (14.0) (0.5, 51.2)

HI 5.9 (6.2) (0.1, 24.5)

OAI 7.3 (11.5) (0.0, 44.0)

CAI 0.7 (1.0) (0.0, 3.0)

MAI 0.5 (1.1) (0.0, 3.5)

ODI 12.4 (11.2) (0.3, 39.2)

N: number of participants; BMI: bodymass index; REI: respiratory event index:
HI/OAI/CAI/MAI: hypopnea/obstructive apnea/central apnea/mixed apnea
index (number of hypopneas/obstructive apneas/central apneas/mixed
apneas per hour of recording); ODI: oxygen desaturation index.
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The temporal distribution of events is further visualized
in Figure 3, which shows classifications by both Somnofy
+SpO2 and HSAT for two random nights in each severity
group.

3.3. Analysis of Sleep Apnea Indexes and Severity. Bland-Alt-
man plots for the different sleep apnea indexes, calculated
from individual nights, are provided in Figure 4. Somnofy
+SpO2 tended to overestimate REI for low REI values and
underestimate REI for high REI values. This trend was driven
mostly by OAI. Furthermore, Somnofy+SpO2 underesti-
mated both CAI and MAI. Consequently, the differences
with HSAT were not normally distributed, and the Bland-

Altman limits of agreement and bias are not statistically valid
for these plots.

The differences in sleep apnea severity between Somnofy
+SpO2 and manual scored HSAT are shown in the classifica-
tion matrix in Table 2. HSAT and Somnofy agreed on the
severity of all participants.

3.4. Using Only Radar Technology or Only Pulse Oximetry.
Table 3 shows the results for the same algorithm but trained
with only radar data or only pulse oximetry. Both technolo-
gies alone showed promising results on a second-by-second
basis and for overall indexes but were inferior to the results
for Somnofy+SpO2.
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Figure 2: Illustration of the respiratory waveform from Somnofy during hypopnea, obstructive apnea, central apnea, and mixed apnea. The
respiratory waveformmeasured by Somnofy is clearly reduced during HSAT classified hypopnea and obstructive apnea (a), central apnea (b),
and mixed apnea (c).
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4. Discussion

The results in the present paper indicate that the combina-
tion of radar technology and pulse oximetry can classify sleep
apnea more accurately than the two technologies separately.

Furthermore, the no event/event classification on a second-
by-second basis showed almost perfect agreement with
HSAT providing information on temporal distribution of
events and event duration. Though, Cohen’s kappa was lower
than between manual PSG scorers on epoch (30 seconds)
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Figure 3: Comparison of HSAT and Somnofy+SpO2 for temporal distribution of events for patients with no, mild, moderate, and severe sleep
apnea. Classifications second by second for HSAT (blue) and Somnofy+SpO2 (orange) plotted on the positive and negative y-axis,
respectively, against time (only denoted by hours) on the x-axis. Parts (a), (b), (c), and (d) show two randomly picked nights with no,
mild, moderate, and severe sleep apnea, respectively.
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resolution [20]. REI per night for only radar technology
and only pulse oximetry was comparable but less accurate
than in previous research [7–10]. Nikkonen et al. [8] also
utilized a neural network on pulse oximetry, but their
training dataset contained 1 692 nights compared to our
14. It is likely that the accuracy of the algorithm in the
present study would improve with a larger dataset. Never-
theless, the results for Somnofy with pulse oximetry were
as accurate as previous research [7–10], and the agreement
was higher than shown between RP and PSG [15, 21].
Furthermore, HSAT and Somnofy with pulse oximetry
agreed on the sleep apnea severity of all patients.

The algorithm showed only moderate agreement for
distinguishing no event/hypopnea/apnea and only fair
agreement for classifying all the different apnea types.
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Figure 4: Bland-Altman plots of agreement between Somnofy+SpO2 and HSAT on different sleep apnea indexes. The disagreement between
Somnofy+SpO2 and HSAT on the y-axis is plotted against the average of Somnofy+SpO2 and HSAT on the x-axis for different sleep apnea
indexes. The blue dots represent values for individual nights, the solid grey line represents the bias, the dotted lines represent the Bland-
Altman 95% limits of agreement, and the orange line represents a linear regression to visualize any trend. REI: respiratory event index
(number of hypopneas and apneas per hour of recording); HI/OAI/CAI/MAI: hypopnea/obstructive apnea/central apnea/mixed apnea
index (number of hypopneas/obstructive apneas/central apneas/mixed apneas per hour of recording).

Table 2: Concordance of sleep apnea severity between HSAT and
Somnofy+SpO2.

Severity according to HSAT
Severity according
to Somnofy+SpO2

Control Mild Moderate Severe

Control 4 0 0 0

Mild 0 6 0 0

Moderate 0 0 2 0

Severe 0 0 0 2

Control = REI < 5, mild = 5 ≤ REI < 15, moderate 15 ≤ REI < 30, and severe
REI ≥ 30.
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Thus, it could not reliably detect the event type. As shown
in Figure 2(a) it is not always straightforward to distin-
guish the apnea types. Here, the radar-measured respira-
tory effort behaves quite similarly for obstructive apnea
and hypopnea, but also the HSAT scorings are not neces-
sary always correct [15, 21], or the sensor data could be
noisy. This motivates a machine learning approach. It is
likely that the machine learning algorithm would improve
with more data, especially for central and mixed apnea
where the dataset contained few events. However, this
warrants further investigations.

Recently, radar technology has been shown to accurately
classify sleep in healthy adults [16] and to possibly detect
body position during sleep (supine, prone, side) [22, 23]. If
radar technology also could reliably classify sleep in persons
with sleep apnea, the proposed solution could calculate
AHI, possibly detect RERAs, and investigate sleep disruption.
With classifications on a second-by-second basis, sleep
apneas could also be analyzed across the different sleep stages
(light, deep, and REM sleep) and body positions. This would
probably not be possible using only pulse oximetry. Using
only radar technology, on the other hand, would not provide
exact information on desaturation levels, unless this could be
accurately estimated from the characteristics of the events.

Other sensors could be used to measure respiration
instead of radars. Wearables, such as RIP [12], nasal cannula,
and thermistor, are generally less convenient for the patient
who has to sleep with sensors attached to his/her body. This
could disrupt sleep and make it more difficult to assess
patient groups that do not accept wearing wires, or the data
quality could be affected if the sensor is attached suboptimal
or disrupted from movements during sleep. Nasal cannula
and thermistor cannot measure inspiratory effort, and nasal
cannula cannot measure mouth breathing. Though, there
are also other nonwearable alternatives like using sound
[24] (subject to audio noise from surroundings), vision-
based solutions (affected by bed sheets), infrared solutions
[25], or under-the-mattress solutions [26, 27]. To the
authors’ knowledge, neither of these alternatives has been
shown to reliably classify individual sleep apnea type, apnea
duration, or temporal distribution of events.

The ability to classify sleep apnea second by second as
well as using exact measurements of oxygen desaturation
levels may contribute to a more detailed and profound
understanding of sleep apnea. Individual sleep apnea event
severity, event duration, oxygen desaturation, temporal
distribution of events, and sleep disruption are all clearly
important from a physiological point of view [13, 14].
Sleep apnea has a multifactorial pathogenesis [28] which
has led to a multitude of options in both diagnostic and

therapeutic measures. More detailed data could thus enable
a more patient-specific tailored sleep apnea management.
Furthermore, a more thorough understanding of the under-
lying pathophysiology will likely be instrumental in under-
standing comorbidities [29, 30]. In the present study, we
have shown that this information might not be limited to
only PSG/RP.

As the proposed solution does not require manual scor-
ing and the equipment does not need expertise to install
(set radar on nightstand and put oximeter on finger), it
should be more scalable and cost efficient than PSG/RP. If
this solution could also reliably measure and diagnose sleep
apnea, more people could receive sleep apnea assessments,
diagnosis could be based on several nights of measurements
to counteract the night-to-night variability in severity of
sleep apnea [31], assessments could be performed in the
patient’s own bed, patients could be continuously monitored
during treatment, and more data could be gathered for
research purposes. Optimally, such an alternative should be
as accurate and detailed as possible.

4.1. Limitations and Future Work. The dataset in the present
study includes 1 584 events which should be more than
enough to validate the algorithm. However, the patient pop-
ulation is relatively small, and a larger study is needed to
assess the clinical usefulness across age, sex, AHI, respiratory
disturbance index (RDI), BMI, and on people with selected
comorbidities. Accuracy should also be analyzed across sen-
sor location and sleeping position. In contrast to the pilot
study, a larger study should use PSG. HSAT does not mea-
sure sleep and is therefore unable to detect RERAs and AHI.

5. Conclusion

The present study indicates that radar technology and pulse
oximetry could assess sleep apnea more accurately than the
two technologies separately. Furthermore, the results show
that classifications of no event/event could be performed reli-
ably on a second-by-second basis, providing information on
apnea duration and temporal distribution of events. This
information is clearly important form a physiological point
of view but has not been validated for radar technology or
pulse oximetry as the focus has been primarily on the AHI.
AHI is the most important clinical parameter today, but do
not give the complete picture of the disease. To increase the
understanding and improve the management of sleep apnea
more information is needed. PSG/RP provides this informa-
tion but is not scalable due to high cost and inconvenience. A
scalable solution could collect data from a larger population
and measure patients for longer periods of time. A larger

Table 3: Agreement for only pulse oximetry, only radar, and the combination of radar and pulse oximetry (Somnofy+SpO2) against HSAT.

5 class κ 3 class κ 2 class κ REI 95% LoA

Only pulse oximetry 0.28 0.34 0.71 -13.96, 11.18

Only radar 0.26 0.34 0.78 -14.48, 9.98

Somnofy+SpO2 0.36 0.43 0.81 -8.25, 7.47

κ =Cohen’s kappa for the whole dataset on seconds resolution, 5 class = no event/hypopnea/obstructive apnea/central apnea/mixed apnea, 3 class = no
event/hypopnea/apnea, 2 class = no event/event, and REI 95% LoA = Bland-Altman 95% limits of agreement for REI.
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study is needed to validate the clinical usefulness of the pres-
ent algorithm across age, sex, AHI, RDI, BMI, and on people
with selected comorbidities.

Abbreviations

AHI: Apnea-hypopnea index
BMI: Body mass index
CAI: Central apnea index (number of central apneas per

hour recording)
HI: Hypopnea index (number of hypopneas per hour

recording)
HSAT: Home sleep apnea test
MAI: Mixed apnea index (number of mixed apneas per

hour recording)
OAI: Obstructive apnea index (number of obstructive

apneas per hour recording)
PSG: Polysomnography
RDI: Respiratory disturbance index
REI: Respiratory event index (number of apneas and

hypopneas per hour recording)
RERA: Respiratory effort-related arousals
RP: Respiratory polygraphy.
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